Optimal construction of a fast and accurate polarisable water potential based on multipole moments trained by machine learning.

نویسندگان

  • Chris M Handley
  • Glenn I Hawe
  • Douglas B Kell
  • Paul L A Popelier
چکیده

To model liquid water correctly and to reproduce its structural, dynamic and thermodynamic properties warrants models that account accurately for electronic polarisation. We have previously demonstrated that polarisation can be represented by fluctuating multipole moments (derived by quantum chemical topology) predicted by multilayer perceptrons (MLPs) in response to the local structure of the cluster. Here we further develop this methodology of modeling polarisation enabling control of the balance between accuracy, in terms of errors in Coulomb energy and computing time. First, the predictive ability and speed of two additional machine learning methods, radial basis function neural networks (RBFNN) and Kriging, are assessed with respect to our previous MLP based polarisable water models, for water dimer, trimer, tetramer, pentamer and hexamer clusters. Compared to MLPs, we find that RBFNNs achieve a 14-26% decrease in median Coulomb energy error, with a factor 2.5-3 slowdown in speed, whilst Kriging achieves a 40-67% decrease in median energy error with a 6.5-8.5 factor slowdown in speed. Then, these compromises between accuracy and speed are improved upon through a simple multi-objective optimisation to identify Pareto-optimal combinations. Compared to the Kriging results, combinations are found that are no less accurate (at the 90th energy error percentile), yet are 58% faster for the dimer, and 26% faster for the pentamer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multipolar polarisable force field method from quantum chemical topology and machine learning

University of Manchester Matthew Mills Doctor of Philosophy 2011 A Multipolar Polarisable Force Field Method from Quantum Chemical Topology and Machine Learning Force field methods are used to investigate the properties of a wide variety of chemical systems on a routine basis. The expression for the electrostatic energy typically does not take into account the anisotropic nature of the atomic e...

متن کامل

Transferable Atomic Multipole Machine Learning Models for Small Organic Molecules.

Accurate representation of the molecular electrostatic potential, which is often expanded in distributed multipole moments, is crucial for an efficient evaluation of intermolecular interactions. Here we introduce a machine learning model for multipole coefficients of atom types H, C, O, N, S, F, and Cl in any molecular conformation. The model is trained on quantum-chemical results for atoms in ...

متن کامل

Forecasting the Tehran Stock market by Machine ‎Learning Methods using a New Loss Function

Stock market forecasting has attracted so many researchers and investors that ‎many studies have been done in this field. These studies have led to the ‎development of many predictive methods, the most widely used of which are ‎machine learning-based methods. In machine learning-based methods, loss ‎function has a key role in determining the model weights. In this study a new loss ‎function is ...

متن کامل

A Comparative Study of Multipole and Empirical Relations Methods for Effective Index and Dispersion Calculations of Silica-Based Photonic Crystal Fibers

In this paper, we present a solid-core Silica-based photonic crystal fiber (PCF) composed of hexagonal lattice of air-holes and calculate the effective index and chromatic dispersion of PCF for different physical parameters using the empirical relations method (ERM). These results are compared with the data obtained from the conventional multipole method (MPM). Our simulation results reveal tha...

متن کامل

EVELOPMENT OF ANFIS-PSO, SVR-PSO, AND ANN-PSO HYBRID INTELLIGENT MODELS FOR PREDICTING THE COMPRESSIVE STRENGTH OF CONCRETE

Concrete is the second most consumed material after water and the most widely used construction material in the world. The compressive strength of concrete is one of its most important mechanical properties, which highly depends on its mix design. The present study uses the intelligent methods with instance-based learning ability to predict the compressive strength of concrete. To achieve this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 11 30  شماره 

صفحات  -

تاریخ انتشار 2009